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The first part of this paper deals with the Frey—Salmon irreversibility
hypothesis, the kinetic equation that is deduced therefrom, and the com-
parison with experiment for the viscosity and thermal conductivity co-
efficients. The relaxation time which has been introduced is the average
value of the duration of a collision. The second part deals with a new
irreversibility hypothesis which leads to a kinetic equation of the same
form as the first but in which the relaxation time is deduced from the
interparticle potential.

KEY WORDS: Relaxation time 7; Frey—Salmon hypothesis of linear
relaxation; B collision integral; new hypothesis of development; expression
of transport coefficients; Frey—Salmon kinetic equation.

1. INTRODUCTION

The transport phenomena in dilute gases are generally studied by means of
Boltzmann’s equation. This is deduced from the BBGKY system of equations
on introducing closure hypotheses that are well known.®

We have recently proposed a closure hypothesis which has allowed us to
obtain a new kinetic equation®® containing a relaxation time r. We have
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determined simple expressions for viscosity and thermal conductivity co-
efficients as a function of . We then introduced a second hypothesis in which
the time = was the average value of the duration of a collision. This duration
is defined as the crossing time of a molecule in the repulsive zone of the
potential.

We thus arrived at expressions for transport coefficients which are
simple functions of the molecular mass m, the temperature T, and the depth
KT; of the potential well (K being Boltzmann’s constant), and in good
agreement with experiment.®:?

This aim of this paper is to propose a new hypothesis as a substitute for
the two preceding ones which will allow us to obtain more precise results.

In the first part, we shall briefly recall the two hypotheses whose associa-
tion allowed us to obtain the first results.

In the second part, we shall deal with the new hypothesis and the
expressions for the transport coefficients to which it leads and shall compare
the new theoretical results with experiment.

In the last part, we shall extend the method to moderately dense gases.

2. FIRST SET OF HYPOTHESES

Our notation is as follows: ¢ designates the time; m is the molecular
mass of the gas; X,, X5, X3, and w,, w,, Wy designate the position and velocity
vectors of particles numbered 1, 2, 3; X, and X, designate the external forces;
X2, Xo3, and X ; designate the central interaction forces; f1, f5, and f; are the
single distribution functions; fi4, fas, and fiz are the double distribution
functions; and f.; is the triple distribution function.

The first two equations of the BBGKY system are written as

o o Xy of X123 912

o P T hw T T G, XedWa =0 )
a.flz aflz aflz Xl + X12 8fZLZ X2 + X21 6]12

ot T x4 + W %, e ow, + m oW,
X13 aﬁ23 X23 8./;[23
+ - +f [m 9W1 m oW, dxz dw; = 0 2
Let us introduce the operators

a 0 0 X, @
S, = + e 3)

7 W ox, = m ow,

X12 7]
_ f e g d @)
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4 4 4 X1+X12._3_+X2+X21 4

512 = 7T 0%, RIS 0%, L oW, m oW, )
5= Xis, 0 Xg5 9
Gry = ”m o T e | e e 6)
The system of equations (1) and (2) is written as
§1ﬁ = élﬂz (7)
5'12f12 = émflza (8)
In equilibrium at the temperature 7, this system admits the solutions
f12 = f1Msz¢’12 (9)
Siaz = ﬂMféMfsMﬁblzs (10)
= n(m[2=KT)*? exp(—mw?*/2KT) an

K is Boltzmann’s constant and # is the density of a particle. ;5 and 95 are
the double and triple correlation functions at equilibrium. They are linked by
the following formula:

KT 0yo/0x, = Xigh10 + J‘ Xiahgthi0s dX5 — ‘/’mf Xianghis dxa  (12)

2.1. The Vlasov—-BGK Equation

We can write fi, in the form

Sro = fifobiz + xa2 (13)
and introduce the hypothesis
Gifiz = Gufafehra + [(i™ — f1)[A7] (14)

where A~ is a relaxation time of the order of magnitude of the average dura-
tion between two collisions.

On substituting (14) into (7), we obtain a kinetic equation containing the
collective field term of Vlasov and the irreversibility term of BGK:

o o X | [ K ofi - fAM
== 4 Wy + — an—l/llznzdxz '*a;;'l'—A—T—’——O (15)

ot ox, m 8w1

2.2. The Frey-Salmon (FS) Hypothesis in Isothermal Conditions
Tt is convenient to write f; 55 in the form

Sizs = fifafsbi2s + X123 (16)

where x;5 designates the divergence between f143 and a form recalling that
of equilibrium.
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The FS hypothesis consists in stating that the action of the operator G,
on y;.3 can be approximated by the formula

Glz)ﬁzs = (fufebia — fr2)]7 a7

where = is a relaxation time of the order of magnitude of the average duration
of a collision. In equilibrium, this term is zero. Away from equilibrium, it
expresses the irreversibility.

Equation (5) is thus put in the following form:

glzflz = GA’12f1f2f3¢'123 + [(fifeth1e "flz)/"] (18)
(1 + 7819)fiz = fifabss + 7Grofifofstbros (19)

By using an iterative method, we find that
(1 4+ 785)7r =1 — 781, + 7%(Sy,)?
It follows that, to first order in

Sie = fifobia — "'[&zﬁfz‘/’m - émflfzfa‘/‘ma] (20)

f12 has become a functional of f; and f,.
We finally obtain

ﬁ2=ﬁf2¢12—7[f2¢12(d£+ W, §£+X1 af1)+f2_afi. X13n3¢123dx3]

m ow ow, m
b 0 X, of 0 X
_T[fl‘/’lz( ;;2'*' Wa* 8J;z +E2.8v]:2) f1 /3 f—ﬁiénall’lzadxail
17 0 X, @ X,, ©
—T[ﬁfz( ¢12+W1 ali12+w2 6%2)‘*"//12( ,;[2 8{;"1 £+ 121 6vaz ﬁ)}
(20"
o, Oh KX
Sr T W 8x1 m ow,

I

2
——f XlZ ﬁz dX2 dW2

=[R2 yrpg, - dxgdw,

m@w

On substituting into (20") and only keeping the terms to first order in =, it
follows that
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f12 = flfzﬁl’m
- fz f [Xiohis + f Xi3ng4h125 X5 — l/flzf X1oftoh1 2 dXo]

7]
- — fl fz [Xorthia +f Xoaahag dX5 — ¢12f X112 dX,]

[asbm P

- Tﬁ.]% 1 axl + Wg

. alibl.‘?.
0X,

Since

f Xishtahys dX5 = f Xlz”z‘/’lz dx,

f Xoshathes dX; = f X173y 5 A%y

it becomes possible to use relation (12) and to obtain for F,, the form

fis = fifubs - [flf2 s | g, %, (wl h+ B
+et fig J’“" (wzfz + %%";)] (20")

whence, on substituting into (1) and on designating by v the average velocity
vector of the fluid, the following kinetic equation is obtained:

0 0 190
—ale + W1"a‘§% + — m 3{;’1 (Xl f X otab10 dxlz)

_ Xis, 0 |01y | Ofng KT of; O1s
TRy, 8W1[ o x4 wifs + m ow, + 0%, Yo/ | dX
(21)

When the gas is dilute enough for the macroscopic quantities » and v not to
vary very much over a distance equal to the range of the interaction force,
Eq. (21) takes the following simplified form:

of 3f X of __nKT 8f KT
where B designates the integral
d‘P d‘l’ r2
3KTf aar @3

in which ¢ represents the interaction potential.
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We multiply this equation by dw, mw, dw, and mV,V,dw, with ¥V, =
w, — Uy, to obtain the equations for the conservation of particles, for the
transport of momentum, and for the transport of the components py; of the
kinetic pressure tensor:

on 0
ot ox, (mog) = 0
vy, ov, Pra _
m[8_t+ qa] Xk+aq—0 24
Py 0 o ov nKT
——g;l * o, (0aPw1) + Pra a—x; + Pi 5;’; + 17— B(pa — nKT ) = 0

Since the conditions are isothermal, we have neglected the thermal
energy flow tensor p,,, in the last equation.

From the latter we have extracted the expression for the viscosity
coeflicient :

p = mjzB 25)

2.3. The FS Hypothesis in Nonisothermal Conditions

Let us suppose the temperature to be nonuniform and designate the heat
flow vector by q. The FS hypothesis is now written

GisXizs = {[flfz (h aaf fa + el U5 8£ w1f1]‘ﬁ1z fm}T—l

w, 2
(26)
and leads to the following kinetic equation:
o o X
ot tw “ox tom m ow
B mKTB af KT
-y oL+ Mo Zadag] e

where 7 is a coefficient equal to — 1/3 for a monatomic gas and to —37/95 ~
—2/5 for a diatomic gas.
We solve Eq. (27) by using Grad’s 13-moment method for f. The thermal
conductivity coefficient A is
5K 1 5 K

A= BT TS T3t Hm” @8)
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thus
A = (15K/dm)p for a monoatomic gas
A = (19K/4m)p  for a diatomic gas

2.4. Expression for x and A

We must form a hypothesis with regard to r. The interparticle potential
has an attractive zone and a repulsive zone and we take r as representing the
average duration of an interaction, which we define as the crossing time
through the repulsive zone during a collision. Tt is during this brief and

intense period of interaction that the loss of information responsible for
irreversibility takes place.

Let us adopt a potential of the type shown in Fig. 1. This potential ¢ is
the limit, when E,, tends to infinity, of

0<r<o, = —Erlc)—1]-E,
r=o, ¢=-Fk
¥ > o, @ = Qq, dey/dr > 0

Let us calculate B and 7. For a dilute gas, we take
b= e~ PIET (29)

B = (8x/3K?T?) f ) (do|dr)?e=?5Tr2 dy (30)

1

Fig. 1
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whence

_§7_T g —(Ey, —EDIKT| pE /KT Em2 _2_E'E —
B= 3U{Eme N\ xr T2 2

 8r [ (dp,)\?
4 e - —37{.2%] (7%:) e~ CdETp2 gy

E, >,  B—>(87/3)o(En/KT)e" kT (31)

The time spent in the repulsive zone by a particle of mass m/2, velocity g
at infinity, and impact parameter p is given by

o2 fel 8] -2l -g] 7o o

But since the potential is very repulsive, r,, is close to o and p?/r? can be
replaced by p?/o? with the other terms unchanged. Thus it follows that

m AW AR
(P, 8) = —E—a [gz( - ga) + ;]

whence, on taking the average over p and g and on introducing a scaling
coefficient «, we obtain

B G p© m 3/2 ~—n;l£2 2 2p dp
T ~fo fo 7P g)(m) [exp( 3 KT)]%g — dg (33

E,, disappears from the product 7B and it follows that

_m 9(wmKT)!2 .
“ T TB T 64rac’[Ga(TiIT) — N a(TT)?le" ™
T, = EIK (35)
Gos®) = 2| (7 + 0% exp(= 1)
0
3. 19,5 s
-1+2x+16x +32x
— 3 10.857582 + log x| 1 + ¥ 4 X (36)
gl & 67 16

Table I shows a comparison with experiment with ¢ in MKSA units.®

3. THE NEW HYPOTHESIS

The weak point of the old hypotheses was the need to calculate =
phenomenologically. The new one allows us to deduce = from the inter-
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particle potential. Under isothermal conditions, it is written as

f123 = flfzfs‘/’ma + (f12 - ﬁfz‘/’m)fa‘/’m‘l’za
+ (fzs - ﬁﬁ¢23)f1‘/’12¢‘13 + (fls - f1f3¢1a)f2¢12¢23

[(W, — w3)-Xug + (Wo — W3)-Xig] fs
+ -+ i (K}/M)llz;m ] (f12 _ﬁ.f2‘/‘12) naas
et [ (W1 — W)X, + (W1 — Wa)-Xis] - fi
+ + 0 i (KT/m)l/zA];m | (.f23 .f2.f3¢23) n103
| 2 — W3 ‘X23 17— Wa)* 12— 2
F e+ “(W b )(KT/I’;Slgva wa) X | (fiz — fofsbia) —nfoa (37)

The arguments in favor of the hypothesis are as follows:
In equilibrium we have

Jis = LS (38)
f123 = fif:a’fa‘ﬁlze (39)

On substituting the first of these equations into (37), we obtain the second.
When particle 3 is very far from the other two, we have

fis =f1f3= Sas =f2f3: Pig = og = 1,
X5 =Xp5 =0, ‘/f123 = 'ﬁlz (40)

as well as

f123 = flzfa (41)

In fact, the substitution of Egs. (40) into (37) leads to (41). Examination of
relation (37) shows that the first four terms express velocity as products of
terms of the type (fio — fifedh12)fa/ns by terms of the type (w, — w3)-Xs.
Factors of the first type are products of divergences of the type (fi; —
f1fob12) between the double distribution function f1, and a form analogous
to that of the equilibrium f; foi, 5, by the quotients of the type f3/ns which, in
a homogeneous medium, represent the distribution of the velocities. Factors
of the second type are scalar products of the interaction force by the relative
velocity vector—i.e., the power involved in the interaction force in its move-
ment around the center of mass. It seems reasonable to choose this quantity
to express the velocity correlations. X, is an average value of the interaction
force and «, is a constant of the coupling.
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Let us substitute expression (37) into Eq. (2). It follows that

[fi2 —ﬁfzsblz]mf [XZ + X5]dxs

tw ox, T War X, + m ow, m oW,

_ [8f12 9 fiz . Xi + Xug Of1s L X, + Xmﬁ]_&_z]

[l s X 0 — s
e +/l12f;3¢13¢23 +f:‘23.f1¢12¢‘13 + ﬁs_fz‘/’lzl,bzs] dX3 dW3

- G 1 = W Xua 4 (v = W) Xaa)

0
X [Xl;g'a

+ Xps- - ][flz f1f2’7[’12]£‘::dxadwa

B T 9 2
(mKT) 2" X, [Xls aw, T Xes awz]

X [(wy — W)Xy + (W — Wy)-Xis5][fes “fzfa‘/‘za];%dxs dwg -

o 0 7
~ (mKT)%e°X,, [X” aw, " Xa_w"]
X [0 = W)+ Xas + (03 = W) Xaallfs — fifohas] 2 dxs dwy - (42)
This expression is written as

fiz = fifabre = 12A(fia, fas, fras fr: Sas 1) (43)

where 4 designates an operator defined by the right-hand side of Eq. (42) and
75 i$ a quantity analogous to a time:

1 2
— mf X 8%, (44)

Let us solve Eq. (43) by iteration:

fl(gﬂ) —flfz 12 = Tzf‘f(ﬂzp)'"

The first iteration gives

frz = fifatbrs + maA(fifatbiz )
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Thus
17, 17 d
Siz = fifabe — "'z[ + Wy 5, + Wy 3x,

Xl + Xlz 8 Xz + le
——— e e ——. + —_—
m oW, m

X a X
+ o= Tzf [‘_1:‘3—"‘ + =2, :‘flf&ﬂ#‘lz’ﬁ dxg dwg

m ow; m oW

bt s i

This relation is identical to that obtained from the old hypotheses but the
collisional time =, is now determined by the expression (44). The kinetic
equation is written

TewZsXZ Llyrw-vZ+ Loy uy

ot oxX  m ow
with
1 _ _dmn T dpadh, o
T = 3 m Ty 0 dx12 dxlz X1z dxm (46)
_2mn (KT) 1/2X 3_[:) (doprofdx,o)(s/dx,2)x30 dxyz @7
= o ~
B \'m " fo (do13/dx15)® dx1g

- (KT)llzX J‘O‘” (doyof/dx ) dip1o]dx,5)x35 dxyo
" T (ol ding

4. VISCOSITY COEFFICIENT OF A DILUTE GAS

Equation (45) leads to the following expression for the viscosity co-
efficient :

u = tnKT (48)
For a dilute gas
hig = €7 Ou2lET (49)
and
3  (dya/dx15)e 12K x3, dx
1 no fo (depyo/dxy2) 1 12 dX1g (50)

T DagmKI)R " [o (@piafdx;o)?x3; doxs

For the interparticle potentials, measurements of the effective cross sections'®
give the form shown in Fig. 2. Let us approximate the repulsive part by a
straight line having a very steep slope E, /o starting from o

Xz <o,  @=—KI — E[(xf0) — 1] (31
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P

KT~ — - - -
~FTa b —————

Fig. 2

The integrals of (50) can be limited to the domain 0 < x;; < ¢, for which

the functions involved are very large. Similarly, we consider X,, = E,/o,
whence
1/7; = (3n6®[200)(KT|m) 2e™/%, E,—x (52)
and
g = (o363 (mMKT)V2e~TiT (53)

Tables IIA-IIC compare theoretical and experimental results.®

Table lIA. Neon®

T,°K 10%un, DP 10%uexp, DP Aplu, Ty
273 2.909 2.973 2
293 3.069 3.111 1.3
373 3.652 3.646 0.2
473 4,287 4.248 0.9
523 4.574 4,532 0.9
558 4.766 4.708 1.2
702 5.492 5.454 0.7
775 5.827 5.802 0.4
867 6.225 6.23 0.07
959 6.6 6.626 0.4

1100 7.138 7.21 1

2¢ = 2315 x 107 m, «, = 0.5437, T, = 72.9°K.
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Table I1B. Nitrogen®

T,°K 10%uy,, DP 10%¢ exp, DP Aplp, 7
251.5 1.543 1.563 1.3
283.9 1.703 1.707 0.2
300.4 1.781 1.781 0.01
400.2 2.205 2.101 0.6
499.7 2.571 2.559 0.4
572 2.81 2.797 04
763 3.369 3.374 0.1
1098 4.18 4.192 0.2

o = 3275 x 10~ m, ey = 0.5474, T; = 84.8°K.

Table lIC. Argon?

T,°K 10%p, DP 10%sexy, DP Aplp, 7o
273 2.069 2.096 L3
373 2.692 2.695 0.001
473 3.226 3.223 0.001
500 3.358 3.34 0.6
573 3.706 3.685 0.6
674 4.126 4.115 0.2
766 4.485 4.484 0.0002
857 4.817 4.825 0.002
987 5.257 5.257 0

1100 5.613 5.632 0.3

2g = 3115 x 107 m, ¢, = 0.5688, T; = 109.4°K.

5. VISCOSITY COEFFICIENT OF A MODERATELY DENSE GAS

The following considerations are for a gas at pressures lower than 150
atm. A possible formula for ;2(x;2) is

2mn [
Pra(Xx12) = CXP{—‘IL—;—; + -Z— L [e-0s/kT _ 1]

1%12+ %13l
X [f (e7%23/ET — 1)Xgq dxzs]xla dx13} (549
|

x12 —x13l
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The integral in the numerator of formula (47) is written

® dpyo d‘;blz 2 - Emf” d‘/‘lz 2
o drys dxeg X3y dxyy = o J, @z x{q dx1g
E, 7
=T [‘ﬁm(") ~ $15(0) _f 21015 dxlzJ
0
En
=T $12(0), E,—
Let us set
X1z = O, @ = —KTh(x), x = Xi5/o (55)

It follows that, to first order in 7;/T,
T, 5 T;
P1a(0) = CXP[T 13 77”03(1 — B 7)] (56)

B

(24/5) jl * 2x® — xOYh(x) dx (57)

On the other hand, in formula (37) let us replace «o/re® by an expansion
of the form («o/nc®) + «; + agno®, or take it that 7, is reduced by the triple
collisions by a factor 1 — Bymno®. The two hypotheses are equivalent with

By = exfeg (58)

Comparison with experiment shows that S, is independent of the nature
of the gas,

B2 = 0.5093 (59)
We arrive at the following formula:
_ay (mKT)'? T, 5 s T;
Fo = 323 T = Bomne? Bymnc® exp — T + -1—277'710' 1 -5 T (60)

Comparison with experiment is made by using the potential
X = x12/0', 1< x < ¢, P = _K];
c< X, o = —KTa(x/c)~*? + (1 — a)(x/c)~®] (61)

where ¢ and a designate the parameters to be optimized. Tables IITA-IIIC
compare theoretical and experimental results for u, and Table IV for the
second virial coefficient.®*®
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Table IIIA. Neon?

7,°K P, atm 10-2p, m~2 10%u,(th), 105p,(exp),
MKSA MKSA Aplp, 7,

223.15 55.94 17.874 2.568 2.643 2.8
223.15 140.7 42.909 2.708 2.724 0.57
248.15 49.57 14.293 2.772 2.827 1.92
248.15 143.15 39.328 2.91 2.894 0.55
298.15 59.75 14.293 3.181 3.201 0.6
298.15 156.3 35.748 3.298 3.267 0.95
373.15 55.79 7.131 3.689 3.702 0.34
373.15 154.83 28.616 3.802 3.747 1.47

g = 2315 x 107 m, ¢ = 1.172, a = 0.8249, B, = 3.0565, T; = 72.9°K.

Table HlIB. Nitrogen®

T, °K P, atm 10-2%, m~3 105p,(th), 105u,(exp),
MKSA MKSA Aplp, T

223.15 29.99 10.298 1.486 1.485 0.1
223.15 85.93 30.915 1.715 1.714 0.08
223.15 143.8 51.511 2.018 2.054 1.7
248.15 33.93 10.298 1.62 1.607 0.8
248.15 834 25.755 1.786 1.766 1.1
248.15 152.5 46.372 2.068 2.072 0.16
298.15 6.77 1.696 1.785 1.781 0.26
298.15 41.67 10.302 1.865 1.839 1.4
298.15 62.58 15.455 1.917 1.887 1.6
373.15 26.35 5.138 2.143 2.133 0.5
373.15 80.52 15.455 2.224 2.213 1.4
373.15 137.76 25.755 2.359 2.331 1.2

g = 3.275 x 1071 m, ¢ = 1.012, a = —3.52665, B, = 2.9624, T = 84.8°K.

Table IlIC. Argon®

T, °K P,atm 10-28p, m~2 10%pu,(th), 10°u,(exp),
MKSA MKSA Aplp, 7,
223.15 30.90 10.84 1.844 1.85 0.31
223.15 91.01 36.122 2.225 2.219 0.3
223.15 152.13 65.022 2.837 2.879 1.4
248.15 34.93 10.84 2.029 2.027 0.14
248.15 87.35 28.9 2.292 2.276 0.72
248.15 156.24 54.182 2.767 2.77 0.1
298.15 28.84 7.221 2.325 2.316 0.41
298.15 84.36 21.679 2.525 2.494 1.23
298.15 138.94 36.122 2,758 2.73 1.01
©373.15 36.61 7.221 2.782 2.775 0.28
373.15 91.55 18.06 2.93 2.9 1.02
373.15 166.6 32.518 3.154 3.124 0.96

o =3.115 x 107 m, ¢ = 1.2705, a = —0.2822, ; = 3.062, T; = 109.4°K.
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6. CONCLUSION

The closure hypothesis we have presented allows us to obtain a kinetic
equation in which the collision term is of Fokker—Planck type with coeffi-
cients that are expressed as a function of the moments. The expressions for
the transport coefficients are simple and are in good agreement with ex-
periment, Y

Let us add that the expression for the viscosity coefficient of a dilute gas
in TH2e~TT was proposed in 1919 by Reinganum based on phenomeno-
logical reasoning.
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